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Trigonometric Interpolation in Holder Spaces
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This note generalizes estimates in [8] for approximation of periodic functions by
Fourier sums and interpolatory polynomials in Holder spaces. In particular, we
give explicit values for constants appearing in Holder norm results.  © 1988 Academic
Press, Inc.

1. INTRODUCTION

Let X be one of the usual spaces C or L” (1<p< o) of 2n-periodic
complex-valued functions. If fe C, we write || f| ., instead of | f} . For
0<a<1 and m=0,1,2, .., we denote by X™* the class of functions f
which fulfil the following condition [2, Definition 1.5.5.]: There exists a
2n-periodic (m — 1)-times absolutely continuous function ¢ with ¢™eX
($ € X in the case m=0), f=¢ in X and

110 = sup |4l ~* [$*(e +h) — (o], < o0

h#0

A norm in X™* is given by
W e i= 2 N1690,+ 187, (1)
k=0
We consider, for fe X™ % the nth Fourier sum
1 r2=»
(S == [ flx—u) Ky(u) du
7 do
with the Dirichlet kernel

1 n
K (x)=5+ Y. cos kx.
k=1
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Further, let L, f be the trigonometric interpolatory polynomial of degree n

of a function fe C™*, based on the equidistant nodes x, =2kn/(2n+1)
(k=0,1,..,2n):

2 2n
(L, NxX) =57 Y f(xe) Kolx = x).

We use the theorem of Jackson on the order of approximation in the
following form:

THEOREM [1, Chap. 5} For n=0,1,.., m=0,1, .., 0<a<]1 and fe X,
we have

E£X)<3m+ D)7 16,0 (2)

and

En(f,X)S-;-(n+ D" 1N, 3)

2. OPERATOR NORMS AND APPROXIMATION BY FOURIER SUMS

The norm of the operators S, and L, is estimated as follows.

LEMMA 1. For n>1 we have

4 )
Plnn+c,,, if 1<p<oo,
[Sull x = x < 4)
A,, if l<p<ow
with
_{L436, i n=1,
“T1,362,  if n>1,
and

4pfp—1)P+1, i 1<p<2,
Ap=141 if p=2,
4p' P41, if 2<p<oo.
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Proof. To prove the first part of (4) we use the well-known convolution
theorem [2, p. 10]

We get an estimation of | K, |, from the representation of the remainder in
[5]. In the case 1 < p< co the inequality (4) is an immediate consequence
of

1S. SN, <4, 1fl, for felL? (1<p<oo),
which is proved in [9, Chap.7]. |
LemMmA 2. We have for nz 1

1, i 1<p<y,
IL e x< { 34, if 2<p<oo,

2
;lnn+C,,, if 2<p< oo,

with

C__ 5/3’ if‘ n=17
"Tl1,548,  if n>1.

Proof. The Parseval equation [9, Chap. 10.2]

1

2n
1L N5 = 1 Y LN
k=0

2n

yields

sup |L.fl,< sup |IL.fll,=1 i 1<p<2
1S g =1 1l =1

Genetally for 1 <p < o0 the assertion follows from [9, Chap. 10]
L 3 1 2n 1/p
<34, {— 4
LAy <34, {5 3 WL s M)

If X=C, it is proved in [4]

1 "o 2k+1 \7!
L =— 2 i
ILollcn e 2n+1{1+ kgo(sm%”n) } (5)

640/53/2-3
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Since

[(sinx)™ ' —x~Y<1-2/n for |x|<m/2,x#0
and

Isinx) ' —x"'|</2—4/n  for |x|<m/d x#0
by the monotonicity of the left side for 0 < x < n/2, it follows that

1 2 "Sl(2n+1)2
ILallc-cS5—+ 2,,+1< +f“> TSR Qk+1)n’

k=0

For n> 20 we estimate

1 1 /2 3 At o2 2
Lic.c< ~ —In(2n—1)——1In39
Iallc—c 39+2+2 T nk 0k+1+nn(n ) nn

<1, 545+zlnn
T

as we stated. For n=1, 2, .., 19 we get the assertion by easy calculations

in (5). 1

Remark. With the same methods but sharper estimates we obtain

C,<1,5fornzd4and ¢c,<1,3forn=7.

THEOREM 1. Supposing fe X™* with 0<r<m, 0<a, <1, r+f<

m+o, n=1, we have

1f=Suflpr s < Br,p)(n+ 1P + D)(n+ 1) 7" g™, ,
with

24
14616+—lnn if 1<p<oo,

B(n, p)=
64, +6, if l<p<oo.

Proof. Using (S,./)®=5,¢% (0<k<r), we get
16— (S, )N, < (1 + S, x = x) E(6¥, X).

With the notation
Bp= 1+ ”Sn”X—»X

it follows from (2) and (6) that

1%~ (S,8)“ll, <3By(n+ D}~ [, .

(6)

(7)
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Hence we obtain by summation

r

Y g% —(S,8)€l,<6B,(n+1) "% ¢, . (8)

Now we define for brevity G={h:|h|>1/(n+1)}, H={h0<|h| <
1/(n+1)}, and

gulx) = ¢(x + h) — ¢(x). 9)
Applying (7) we get for heG,

sup |h =7 ligi" — S, g, <2+ 1)P |47~ 5,4,

heG

6B, (a+1y "oy (10)

In the case he H we estimate with (6)

sup |k 7 || gl ~ S.gill, < sup |hl =7 B, E (g}, X).

heHd he H

If B <« it follows easily from (3)

sup |h| BB En(g(r) X)ssup |h|—ﬂB (n+ l)r m ” g(m) “p

heH he H

T
<B,,§(n+1)"'"+”"’l|¢"”’||p,a- (11)
Let now a < # which implies r <m. Applying Jackson’s theorem we obtain

sup |h|~# B, E, (g}, X)

he H

<sup h| 77 B, 3(n+ 1)y """ sup |lgi"~ o +6) —gim V),

heH deH

=3(n+1)Y~"*' B, sup sup |h| ~# ﬂf g (o + u) du

heH de H

<3(n+1)y""*' B, sup [h|' P sup g,

he H deH

<3B,(n+ 1)~ P g, . (12)

The proof is complete, if we summarize (8), (10)-(12). J
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The nth Fourier sum of a function fe L? is also the trigonometric
polynomial of best approximation to fin L% Therefore we can sharpen the
theorem in this case. Under the same conditions it holds that

= Suf W2 <O+ 1P+ 1)+ 1) 7 5o

3. INTERPOLATION

At first we estimate the difference between Fourier sum S, f and inter-
polatory polynomial L, f for functions fe C™*.

THEOREM 2. Supposing fe C™* with 0<r<m, 0<a, f<1, r+f<
m+a, n=1, we have

180 f =L fllp.r s < Clm, pY(n+ 1) + DYn+ 1) =" | ™
with
12, if 1<p<2,
C(n,p)= 24A,,, lf 2<p<oo,

12 24
18,616+(—n—+P)1nn, if 2<p<oo.

Proof. Applying the inequality of Bernstein, we get

S, YO = (L YN, <0 S, f= Lo f1,
<n*(Ib,— S, fll, + 16, — L, f1,),

where b, is the trigonometric polynomial of best approximation to fin C.
With the help of (2) it follows that

ISuf YO = (L, £ YU, <n* EL(f, OISl x + ILallc- x)
e+ S NS e wx+ I Lall e x)- (13)

Further, we get

sup 14| 2 1(S,84)" = (Lagn)"ll,<sup |hl ~* 1" ||S, g4 — Lagall,

h#0 h#0
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with g, defined in (9). Then we have

sup n” |h| ~# 1S, g4 — Ly gll, <sup 20" |h| " |S, f— L, f,

heG heG
=2n"(n+ )P |S.f= L.fl, (14)

and

sup n” |h| ~? |S, g4 — Lo gall, <sup n” |h| =" E,(g,,C)

heH he H

X(ILpllco x+ 1Sallco x) - (15)

Now we must distinguish the cases f <o and a < f with r <m. We will
consider only the first one, then the second case can be handled
analogously as in (12).

Denoting the right side of (15) with 4, we get for f<a

4 SSUP%H’OH D= 1P g e USull e x + I Lall e x)

heH

S5+ )77 f N e (IS lenx H L cnx) (16)

ST

Now it is enough to collect (13) for 0<k<r, (14)-(16), to use
loll,rp<llelly, pfor 1<p<2and we get the desired result. |

The following main theorem is now a simple consequence of the
estimates for | f—S, f |, ,sand |S,f—L, fl,,zs-

THEOREM 3. Supposing fe C™* with 0<r<m, 0<a, <1, r+f<
m+a, n=1, we have

1f=Lof )y, s SD(m, pYn+ 1) —mH0=2 ) £
with
36, if 1<p<2,

D(n,p)< { 604, + 12, if 2<p<o,
66,464 +17,367Inn, if 2<p<oo.
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4. COROLLARIES

Let us give some refinements of this estimate:

1. If n=2 we can improve the estimates for
Y (n+ 1)
k=0

and for ¢, and C, introduced in Lemmas 1 and 2. That is why it holds for
n =2 that

31,5, if 1<p<2,
D(n, p)< { 52,54, +10,5, if 2<p<oo,
55,356+ 15,196Inn,  if 2<p< o

and for n>= 7 that

28, 286, if 1<p<2,
D(n,p)< (47,143 4,+9, 429, if 2<p<oo,
48,086 + 13, 6451n n, if 2<p<oo.

Analogous improvements are possible for B(n,p) in Theorem 1. The
estimates are true for general n, p, r, B, m, «. It is expected that for special
values the constants are essentially smaller.

2. Since 4, > In n for small n, it is better to take the constant with the
In term at least for n < 5-10® in Theorem 3 and at least for n<3.9-10° in
Theorem 1.

3. It is easy to verify in the proofs that we can replace |¢“”|, , in the
right sides of Theorems 1-3 by

sup |4l ~* |4 (o + ) — (),

heH

4. In [7] S. Prossdorf studied a closed subspace of C%2. It is naturally
to generalize this to the subspace X" *< X™* (0<a<1):

fe= e fim 4 167 + )= ¢ (= )1, =0}

with norm defined in (1). Then ¥™°=Xx™°,
Therefore we state a corollary.
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COROLLARY. Suppose 0<r<m, 0<fB<1, 0a<tl and r+B<m+a
Then it holds for fe X

o(n’ "8~ %lnn), if p=lorp=oo
”f Sf”prﬁ {(r m+ f§— a)’ lj- 1<p<w (n—’CD)
and for fe C™*
o(n”~"*#*Inn), if p=o
=Luflos={or misny 1 <peen, (noe0)

Remark. In [6] R. Haverkamp proved for k> 1 and fe C*°,

10~ @¥les (146 (242 ma) ) B0 0) an

with C, = ((n/2)*(n +2)—2n)/(n —2) and E, means that the infimum is
taken over all trigonometric polynomials p, of degree <n with Syp,=0.
From (6) and (13) we have for fe C*°

1£9 = (L )N, <+ 1Syl e x) ELfY, €)
+r(ISull e x I Lullcx) LS, ). (18)

With the inequality

E(f. O)<E(f, OV <5z EAS'.C (2n+2) E(f*, €)
which follows from [3, Chap. 43], we get
1£% = (L, SY®U, < Dik, n, p) ELf*, C) (19)

with

D(k, n, p)=1+1S, uc.,x+( ) USullcx+ 1 Lnllc o x)

Using Lemma 1 and 2 we obtain estimates for D(k,n,p). If k=2, p= 0,
they are better than (17). But, if we want to apply Jackson’s theorem, it is
useful to do this in (18) instead of (19), since D(k, n, p)>2(n/2)*. Such a
result, where the constant is independent of k is contained in Theorem 3.
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