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Trigonometric Interpolation in Holder Spaces
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This note generalizes estimates in [8] for approximation of periodic functions by
Fourier sums and interpolatory polynomials in Holder spaces. In particular, we
give explicit values for constants appearing in Holder norm results. © 1988 Academic

Press, Inc.

1. INTRODUCTION

Let X be one of the usual spaces C or U (1 ~p < 00) of 2n-periodic
complex-valued functions. If IE C. we write IIII1 C<) instead of IlfII c' For
o~ ex ~ 1 and m = O. 1. 2. .... we denote by X"" ~ the class of functions I
which fulfil the following condition [2. Definition 1.5.5.]: There exists a
2n-periodic (m - 1)-times absolutely continuous function </J with </J(m) E X
(</J E X in the case m = 0). 1= </J in X and

1I</J(m)llp,~ := sup Ihl-~ II </J(m)( 0 +h) - </J(m)( 0 )lI p < 00.
h#O

A norm in X"" ex is given by

m

1I/11 p,m, ex := L 11</J(k)ll p + 1I</J(m)ll p.ex'
k~O

We consider. for IE X""~. the nth Fourier sum

112
"(Sn!)(x)=- I(x-u) K,,(u) du

n 0

with the Dirichlet kernel

1 "
K,,(x)=2+ L cos kx.

k~l
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Further, let Lnl be the trigonometric interpolatory polynomial of degree n
of a function IE em. ~, based on the equidistant nodes Xk = 2kn/(2n + 1)
(k = 0, 1, ..., 2n):

We use the theorem of Jackson on the order of approximation in the
following form:

THEOREM [1, Chap. 5]. For n=O, 1, ..., m=O, 1, ..., O~IX~ 1 and IE xm.~,

we have

and

2. OPERATOR NORMS AND ApPROXIMATION BY FOURIER SUMS

The norm of the operators Sn and L n is estimated as follows.

LEMMA 1. For n~ 1 we have

(2)

(3)

with

if 1~p~ 00,

if l<p<oo
(4)

and

_{I, 436,
en - 1, 362,

if n = 1,
if n> 1,

_!4(P/(P-1))iI
P + 1,

Ap - 1,
4pl~1IP+ 1,

if 1<p<2,

if P = 2,
if 2<p<00.



INTERPOLATION IN HOLDER SPACES 147

Proof To prove the first part of (4) we use the well-known convolution
theorem [2, p. 10]

We get an estimation of II K n III from the representation of the remainder in
[5]. In the case 1<p< 00 the inequality (4) is an immediate consequence
of

for fEU (1 <p< 00),

which is proved in [9, Chap. 7]. I

LEMMA 2. We have for n ~ 1

1,

IILnllc~ x~ 3Ap ,

2
-lnn+ Cn'
1t

with

C = {5/3,
n 1,548,

if 1~p~2,

if 2<p<00,

if 2<p~oo,

if n = 1,
if n>1.

Proof The Parseval equation [9, Chap. 10.2]

yields

sup IILJllp~ sup IILJI12=1,
II 11I00 = I IIf1100 = I

if 1~p ~ 2.

Generally for 1<p < 00 the assertion follows from [9, Chap. 10]

IILnfil p ~ 3A p {2n ~ 1k~O I(Lnf )(xdlP
riP.

If x= C, it is proved in [4]

1 { n-I( 2k+l )-I}
IILnllc~c=2n+ 1 1+2 k~O sin 4n+2 1t •

640/53/2·3

(5)
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and

for Ixl ~ n12, x'" 0

for Ixl ~nI4, x",O

by the monotonicity of the left side for 0 < x ~ n12, it follows that

For n~ 20 we estimate

1 1 J2 3 4 19 1 2 2
IILnllc_c~-+-+---+- L --+-In(2n-l)--ln 39

39 2 2 n n k = 0 2k + 1 n n

2
< 1, 545 +- In n

n

as we stated. For n = 1, 2, ..., 19 we get the assertion by easy calculations
in (5). I

Remark. With the same methods but sharper estimates we obtain
Cn < 1, 5 for n~4 and Cn < 1, 3 for n~7.

THEOREM 1. Supposing IE X"" ~ with 0 ~ r ~ m, 0 ~ a, p~ 1, r +P~
m + a, n ~ 1, we have

with

B(n, p) =
if l<p<oo.

With the notation

Bp =1+ IISnllx_x

it follows from (2) and (6) that

11t,6(k)- (Snt,6)(k)lI p ~ 3Bp (n + l)k-m-~ 11t,6(m)lIp.~. (7)
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Hence we obtain by summation
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r

L 11<p(k)-(Sn<p)(k)llp~6Bp(n+ly-m-(l 1I<p(m)lIp,(l' (8)
k=O

Now we define for brevity G = {h: jhj > Ij(n + I)}, H = {h: 0 < Ihl ~
Ij(n + 1)}, and

(9)

Applying (7) we get for hE G,

sup Ihl- fJ Ilgr) - Sn grlilp~ 2(n + l)fJ 11<p(rl - Sn<p(r)ll p
heG

In the case hE H we estimate with (6)

sup Ihl- fJ II gr) - Sngl:)ll p~ sup Ihl- fJ BpEn(grl, X).
hEH heH

If f3 ~ ex. it follows easily from (3)

Let now ex. < p which implies r < m. Applying Jackson's theorem we obtain

sup Ihl- fJ Bp En(gl:l, X)
heH

~ sup Ih1-/l Bp 3(n + 1)r - m+ ! sup II g~m - ! l( 0 + (5) - gkm- !)(o) II p
heH oeH

=3(n + l)r-m+! Bp sup sup Ihl- fJ IIrg~ml(o + u) dull
hEHoeH 0 p

~3(n+ ly-m+! Bp sup IW-/l sup IIg~mllip
heH oeH

(12)

The proof is complete, if we summarize (8), (lO}-(12). I
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The nth Fourier sum of a function IE L 2 is also the trigonometric
polynomial of best approximation to I in L 2. Therefore we can sharpen the
theorem in this case. Under the same conditions it holds that

3. INTERPOLATION

At first we estimate the difference between Fourier sum Snl and inter
polatory polynomial Lnf for functions IE cm, ~.

THEOREM 2. Supposing I E cm.~ with 0 ~ r ~ m, 0 ~ IX, f3 ~ 1, r + f3 ~
m + IX, n";3 1, we have

with

12, if 1~p~2,

C(n,p) = 24A p , if 2<p<oo,

C2 24) if18,616 + -; + 11: 2 In n, 2<p~oo.

Proof Applying the inequality of Bernstein, we get

II(Snf)(kl - (Ln/)(klil p~ nk IISnl- L"/ll p

~nk(lIbn-S"/lIp+ Ilbn-Ln/ll p ),

where b" is the trigonometric polynomial of best approximation to I in C.
With the help of (2) it follows that

II (S"I )(k) - (L" I )(k)ll p~ nk E,,(f, C)( I\Sn II c~ x + I\L" II c~ x)

~ 3(n + l)k-m-~ II I (mlllc,~(IIS" IIc~x+ IILnllc~x)· (13)

Further, we get

sup Ihl-P II (Sngh)(r) - (Lngh)(r)lI p~ sup /hl- Pnr IIS"gh -Lnghlip
h "'0 h .. O
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with gh defined in (9). Then we have

sup nr \hl- p IISn gh - Lngh lip ~ sup 2n r Ihl-p IISnf - Lnfll p
hEG hEG

151

=2nr(n + 1)13 IIS,J- L,Jll p (14)

and

sup nr Ihl- p IISn gh - Lngh lip ~ sup nr Ihl- p En(gh' C)
hEH hEH

Now we must distinguish the cases f3 ~ IX and IX < f3 with r < m. We will
consider only the first one, then the second case can be handled
analogously as in (12).

Denoting the right side of (15) with A, we get for f3 < IX

Now it is enough to collect (13) for O~k~r, (14)-(16), to use
11 0 lip, r, fJ ~ II 0 112,r, 13 for 1~p < 2 and we get the desired result. I

The following main theorem is now a simple consequence of the
estimates for IIf-Snfllp,r,fJ and IISnf-Lnfllp.r,p.

THEOREM 3. Supposing fE cm, ~ with 0~ r ~ m, 0~ IX, f3 ~ 1, r + f3 ~
m + IX, n;::: 1, we have

with

!
36,

D(n, p) ~ 60A p + 12,

66,464 + 17, 367 In n,

if 1~p~2,

if 2<p<oo,

if 2<p~oo.
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4. COROLLARIES

Let us give some refinements of this estimate:

1. If n~ 2 we can improve the estimates for

and for en and Cn introduced in Lemmas 1 and 2. That is why it holds for
n ~ 2 that

1

31,5,

D(n,p)~ 52,5A p + 10,5,

55,356 + 15, 196 In n,

and for n~ 7 that

1

28,286,

D(n,p)~ 47,143Ap +9,429,

48, 086 + 13, 645 In n,

if 1~p~2,

if 2 <p< 00,

if 2<p~00

if 1~p ~2,

if 2 <p< 00,

if 2<p~00.

Analogous improvements are possible for B(n, p) in Theorem 1. The
estimates are true for general n, p, r, {J, m, a. It is expected that for special
values the constants are essentially smaller.

2. Since A p ~ In n for small n, it is better to take the constant with the
In term at least for n < 5 . 108 in Theorem 3 and at least for n < 3.9 . 105 in
Theorem 1.

3. It is easy to verify in the proofs that we can replace 11~(m)llp." in the
right sides of Theorems 1-3 by

sup Ihl-" 1I~(m)( 0 + h) - ~(m)( 0 )ll p.
hEH

4. In [7] S. Prossdorf studied a closed subspace of Co. ex. It is naturally
to generalize this to the subspace p." £; p." (0 ~ at < 1):

with norm defined in (1). Then X"" °= p.o.

Therefore we state a corollary.
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COROLLARY. Suppose O~r~m, O~f3~ 1, O~C« 1 and r+f3~m+C(.

Then it holds for fE yn.oc

and for fE em. oc

{
o(nr - m + iJ -" In n),

Ilf- LJllp.r. fJ = o(nr- m+ iJ-"),

if p = 1 or p = 00

if l<p<oo (n--+oo)

if p= 00,

if 1~P < 00, (n --+ 00 ).

Remark. In [6] R. Haverkamp proved for k ~ 1 and fE Ck
, 0,

with Ck=«n/2)k(n+2)-2n)/(n-2) and En means that the infimum is
taken over all trigonometric polynomials Pn of degree ~ n with SoPn = O.
From (6) and (13) we have for fE Ck,o

Ilpkl - (Lnf)(klil p ~ (1 + liS" Ilc~ x) E,,(f(kl, C)

+nk(IIS"llc~x+ IIL"llc~x)E,,(J, C). (18)

With the inequality

which follows from [3, Chap. 43], we get

Ilf(kl - (L"f)(k l lip ~ D(k, n, p) E,,(Pkl, C)

with

D(k, n,p) = 1+ liS" Ilc~x+ (~)k (liS" IIe-x+ ilL" lie_x).

(19)

Using Lemma 1 and 2 we obtain estimates for D(k, n, p). If k ~ 2, p = 00,

they are better than (17). But, if we want to apply Jackson's theorem, it is
useful to do this in (18) instead of (19), since D(k,n,p»2(n/2t. Such a
result, where the constant is independent of k is contained in Theorem 3.
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