JOURNAL OF APPROXIMATION THEORY 53, 145-154 (1988)

Trigonometric Interpolation in Hölder Spaces

JÜRGEN PRESTIN

Sektion Mathematik, Wilhelm-Pieck-Universität 2500 Rostock, East Germany

Communicated by G. Meinardus

Received May 1, 1985

This note generalizes estimates in [8] for approximation of periodic functions by Fourier sums and interpolatory polynomials in Hölder spaces. In particular, we give explicit values for constants appearing in Hölder norm results. © 1988 Academic Press, Inc.

1. INTRODUCTION

Let X be one of the usual spaces C or L^p $(1 \le p < \infty)$ of 2π -periodic complex-valued functions. If $f \in C$, we write $||f||_{\infty}$ instead of $||f||_C$. For $0 \le \alpha \le 1$ and m = 0, 1, 2, ..., we denote by $X^{m, \alpha}$ the class of functions f which fulfil the following condition [2, Definition 1.5.5.]: There exists a 2π -periodic (m-1)-times absolutely continuous function ϕ with $\phi^{(m)} \in X$ $(\phi \in X \text{ in the case } m = 0), f = \phi \text{ in } X$ and

$$\|\phi^{(m)}\|_{p,\alpha} := \sup_{h \neq 0} \|h\|^{-\alpha} \|\phi^{(m)}(\circ + h) - \phi^{(m)}(\circ)\|_{p} < \infty.$$

A norm in $X^{m, \alpha}$ is given by

$$\|f\|_{p,m,\alpha} := \sum_{k=0}^{m} \|\phi^{(k)}\|_{p} + \|\phi^{(m)}\|_{p,\alpha}.$$
 (1)

We consider, for $f \in X^{m, \alpha}$, the *n*th Fourier sum

$$(S_n f)(x) = \frac{1}{\pi} \int_0^{2\pi} f(x - u) K_n(u) \, du$$

with the Dirichlet kernel

$$K_n(x) = \frac{1}{2} + \sum_{k=1}^n \cos kx.$$

145

0021-9045/88 \$3.00

Copyright © 1988 by Academic Press, Inc. All rights of reproduction in any form reserved. Further, let $L_n f$ be the trigonometric interpolatory polynomial of degree n of a function $f \in C^{m, \alpha}$, based on the equidistant nodes $x_k = 2k\pi/(2n+1)$ (k = 0, 1, ..., 2n):

$$(L_n f)(x) = \frac{2}{2n+1} \sum_{k=0}^{2n} f(x_k) K_n(x-x_k).$$

We use the theorem of Jackson on the order of approximation in the following form:

THEOREM [1, Chap. 5]. For $n=0, 1, ..., m=0, 1, ..., 0 \le \alpha \le 1$ and $f \in X^{m,\alpha}$, we have

$$E_n(f, X) \le 3(n+1)^{-m-\alpha} \|\phi^{(m)}\|_{p,\alpha}$$
(2)

and

$$E_n(f,X) \leq \frac{\pi}{2} (n+1)^{-m} \|\phi^{(m)}\|_p.$$
(3)

2. Operator Norms and Approximation by Fourier Sums

The norm of the operators S_n and L_n is estimated as follows.

LEMMA 1. For $n \ge 1$ we have

$$\|S_n\|_{X \to X} \leqslant \begin{cases} \frac{4}{\pi^2} \ln n + c_n, & \text{if } 1 \leqslant p \leqslant \infty, \\ A_p, & \text{if } 1
(4)$$

with

$$c_n = \begin{cases} 1, \, 436, & \text{if } n = 1, \\ 1, \, 362, & \text{if } n > 1, \end{cases}$$

and

$$A_{p} = \begin{cases} 4(p/(p-1))^{1/p} + 1, & \text{if } 1$$

Proof. To prove the first part of (4) we use the well-known convolution theorem [2, p. 10]

$$||S_n f||_p \leq ||f||_p ||2K_n||_1.$$

We get an estimation of $||K_n||_1$ from the representation of the remainder in [5]. In the case 1 the inequality (4) is an immediate consequence of

$$\|S_n f\|_p \leq A_p \|f\|_p \quad \text{for} \quad f \in L^p \ (1$$

which is proved in [9, Chap. 7].

LEMMA 2. We have for $n \ge 1$

$$\|L_n\|_{C \to X} \leq \begin{cases} 1, & \text{if } 1 \leq p \leq 2, \\ 3A_p, & \text{if } 2$$

with

$$C_n = \begin{cases} 5/3, & \text{if } n = 1, \\ 1, 548, & \text{if } n > 1. \end{cases}$$

Proof. The Parseval equation [9, Chap. 10.2]

$$||L_n f||_2^2 = \frac{1}{2n+1} \sum_{k=0}^{2n} |(L_n f)(x_k)|^2$$

yields

$$\sup_{\|f\|_{\infty} = 1} \|L_n f\|_p \leq \sup_{\|f\|_{\infty} = 1} \|L_n f\|_2 = 1, \quad \text{if} \quad 1 \leq p \leq 2.$$

Generally for 1 the assertion follows from [9, Chap. 10]

$$\|L_n f\|_p \leq 3A_p \left\{ \frac{1}{2n+1} \sum_{k=0}^{2n} |(L_n f)(x_k)|^p \right\}^{1/p}.$$

If X = C, it is proved in [4]

$$\|L_n\|_{C \to C} = \frac{1}{2n+1} \left\{ 1 + 2\sum_{k=0}^{n-1} \left(\sin \frac{2k+1}{4n+2} \pi \right)^{-1} \right\}.$$
 (5)

Since

$$|(\sin x)^{-1} - x^{-1}| \le 1 - 2/\pi$$
 for $|x| \le \pi/2, x \ne 0$

and

$$|(\sin x)^{-1} - x^{-1}| \le \sqrt{2} - 4/\pi$$
 for $|x| \le \pi/4, x \ne 0$

by the monotonicity of the left side for $0 < x \le \pi/2$, it follows that

$$\|L_n\|_{C\to C} \leq \frac{1}{2n+1} + \frac{n}{2n+1} \left(1 + \sqrt{2} - \frac{6}{\pi}\right) + \frac{2}{2n+1} \sum_{k=0}^{n-1} \frac{(2n+1)2}{(2k+1)\pi}$$

For $n \ge 20$ we estimate

$$\|L_n\|_{C\to C} \le \frac{1}{39} + \frac{1}{2} + \frac{\sqrt{2}}{2} - \frac{3}{\pi} + \frac{4}{\pi} \sum_{k=0}^{19} \frac{1}{2k+1} + \frac{2}{\pi} \ln(2n-1) - \frac{2}{\pi} \ln 39$$

< 1, 545 + $\frac{2}{\pi} \ln n$

as we stated. For n = 1, 2, ..., 19 we get the assertion by easy calculations in (5).

Remark. With the same methods but sharper estimates we obtain $C_n < 1$, 5 for $n \ge 4$ and $c_n < 1$, 3 for $n \ge 7$.

THEOREM 1. Supposing $f \in X^{m, \alpha}$ with $0 \leq r \leq m$, $0 \leq \alpha, \beta \leq 1, r + \beta \leq m + \alpha, n \geq 1$, we have

$$\|f - S_n f\|_{p,r,\beta} \leq B(n,p)((n+1)^{\beta} + 1)(n+1)^{r-m-\alpha} \|\phi^{(m)}\|_{p,\alpha}$$

with

$$B(n, p) = \begin{cases} 14,616 + \frac{24}{\pi^2} \ln n, & \text{if } 1 \le p \le \infty, \\ 6A_p + 6, & \text{if } 1$$

Proof. Using $(S_n f)^{(k)} = S_n \phi^{(k)}$ $(0 \le k \le r)$, we get

$$\|\phi^{(k)} - (S_n\phi)^{(k)}\|_p \le (1 + \|S_n\|_{X \to X}) E_n(\phi^{(k)}, X).$$
(6)

With the notation

$$B_p = 1 + \|S_n\|_{X \to X}$$

it follows from (2) and (6) that

$$\|\phi^{(k)} - (S_n \phi)^{(k)}\|_p \leq 3B_p (n+1)^{k-m-\alpha} \|\phi^{(m)}\|_{p,\alpha}.$$
 (7)

148

Hence we obtain by summation

$$\sum_{k=0}^{r} \|\phi^{(k)} - (S_n \phi)^{(k)}\|_p \leq 6B_p (n+1)^{r-m-\alpha} \|\phi^{(m)}\|_{p,\alpha}.$$
(8)

Now we define for brevity $G = \{h: |h| > 1/(n+1)\}, H = \{h: 0 < |h| \le 1/(n+1)\}$, and

$$g_h(x) = \phi(x+h) - \phi(x). \tag{9}$$

Applying (7) we get for $h \in G$,

$$\sup_{h \in G} \|h\|^{-\beta} \|g_{h}^{(r)} - S_{n} g_{h}^{(r)}\|_{p} \leq 2(n+1)^{\beta} \|\phi^{(r)} - S_{n} \phi^{(r)}\|_{p}$$
$$\leq 6B_{p}(n+1)^{r-m+\beta-\alpha} \|\phi^{(m)}\|_{p,\alpha}.$$
(10)

In the case $h \in H$ we estimate with (6)

$$\sup_{h \in H} |h|^{-\beta} \|g_h^{(r)} - S_n g_h^{(r)}\|_p \leq \sup_{h \in H} |h|^{-\beta} B_p E_n(g_h^{(r)}, X).$$

If $\beta \leq \alpha$ it follows easily from (3)

$$\sup_{h \in H} |h|^{-\beta} B_p E_n(g_h^{(r)}, X) \leq \sup_{h \in H} |h|^{-\beta} B_p \frac{\pi}{2} (n+1)^{r-m} \|g_h^{(m)}\|_p$$
$$\leq B_p \frac{\pi}{2} (n+1)^{r-m+\beta-\alpha} \|\phi^{(m)}\|_{p,\alpha}.$$
(11)

Let now $\alpha < \beta$ which implies r < m. Applying Jackson's theorem we obtain

$$\sup_{h \in H} |h|^{-\beta} B_{p} E_{n}(g_{h}^{(r)}, X)$$

$$\leq \sup_{h \in H} |h|^{-\beta} B_{p} 3(n+1)^{r-m+1} \sup_{\delta \in H} \|g_{h}^{(m-1)}(\circ + \delta) - g_{h}^{(m-1)}(\circ)\|_{p}$$

$$= 3(n+1)^{r-m+1} B_{p} \sup_{h \in H} \sup_{\delta \in H} |h|^{-\beta} \left\| \int_{0}^{h} g_{\delta}^{(m)}(\circ + u) \, du \right\|_{p}$$

$$\leq 3(n+1)^{r-m+1} B_{p} \sup_{h \in H} |h|^{1-\beta} \sup_{\delta \in H} \|g_{\delta}^{(m)}\|_{p}$$

$$\leq 3B_{p}(n+1)^{r-m+\beta-\alpha} \|\phi^{(m)}\|_{p,\alpha}.$$
(12)

The proof is complete, if we summarize (8), (10)-(12).

JÜRGEN PRESTIN

The *n*th Fourier sum of a function $f \in L^2$ is also the trigonometric polynomial of best approximation to f in L^2 . Therefore we can sharpen the theorem in this case. Under the same conditions it holds that

$$\| f - S_n f \|_{2, r, \beta} \leq 6((n+1)^{\beta} + 1)(n+1)^{r-m-\alpha} \| \phi^{(m)} \|_{2, \alpha}.$$

3. INTERPOLATION

At first we estimate the difference between Fourier sum $S_n f$ and interpolatory polynomial $L_n f$ for functions $f \in C^{m, \alpha}$.

THEOREM 2. Supposing $f \in C^{m,\alpha}$ with $0 \le r \le m$, $0 \le \alpha$, $\beta \le 1$, $r + \beta \le m + \alpha$, $n \ge 1$, we have

$$\|S_n f - L_n f\|_{p,r,\beta} \leq C(n,p)((n+1)^{\beta} + 1)(n+1)^{r-m-\alpha} \|f^{(m)}\|_{C,\alpha}$$

with

$$C(n, p) = \begin{cases} 12, & \text{if } 1 \le p \le 2, \\ 24A_p, & \text{if } 2$$

Proof. Applying the inequality of Bernstein, we get

$$\| (S_n f)^{(k)} - (L_n f)^{(k)} \|_p \leq n^k \| S_n f - L_n f \|_p$$

$$\leq n^k (\| b_n - S_n f \|_p + \| b_n - L_n f \|_p),$$

where b_n is the trigonometric polynomial of best approximation to f in C. With the help of (2) it follows that

$$\| (S_n f)^{(k)} - (L_n f)^{(k)} \|_p \leq n^k E_n(f, C) (\|S_n\|_{C \to X} + \|L_n\|_{C \to X})$$

$$\leq 3(n+1)^{k-m-\alpha} \| f^{(m)} \|_{C,\alpha} (\|S_n\|_{C \to X} + \|L_n\|_{C \to X}).$$
(13)

Further, we get

$$\sup_{h \neq 0} |h|^{-\beta} \| (S_n g_h)^{(r)} - (L_n g_h)^{(r)} \|_p \leq \sup_{h \neq 0} |h|^{-\beta} n^r \| S_n g_h - L_n g_h \|_p$$

with g_h defined in (9). Then we have

$$\sup_{h \in G} n^{r} |h|^{-\beta} \|S_{n}g_{h} - L_{n}g_{h}\|_{p} \leq \sup_{h \in G} 2n^{r} |h|^{-\beta} \|S_{n}f - L_{n}f\|_{p}$$
$$= 2n^{r}(n+1)^{\beta} \|S_{n}f - L_{n}f\|_{p}$$
(14)

and

$$\sup_{h \in H} n^{r} |h|^{-\beta} \|S_{n}g_{h} - L_{n}g_{h}\|_{p} \leq \sup_{h \in H} n^{r} |h|^{-\beta} E_{n}(g_{h}, C)$$
$$\times (\|L_{n}\|_{C \to X} + \|S_{n}\|_{C \to X}). \quad (15)$$

Now we must distinguish the cases $\beta \leq \alpha$ and $\alpha < \beta$ with r < m. We will consider only the first one, then the second case can be handled analogously as in (12).

Denoting the right side of (15) with A, we get for $\beta < \alpha$

$$A \leq \sup_{h \in H} \frac{\pi}{2} n^{r} (n+1)^{-m} |h|^{-\beta} \|g_{h}^{(m)}\|_{C} (\|S_{n}\|_{C \to X} + \|L_{n}\|_{C \to X})$$

$$\leq \frac{\pi}{2} n^{r} (n+1)^{-m+\beta-\alpha} \|f^{(m)}\|_{C,\alpha} (\|S_{n}\|_{C \to X} + \|L_{n}\|_{C \to X}).$$
(16)

Now it is enough to collect (13) for $0 \le k \le r$, (14)–(16), to use $\| \circ \|_{p,r,\beta} \le \| \circ \|_{2,r,\beta}$ for $1 \le p < 2$ and we get the desired result.

The following main theorem is now a simple consequence of the estimates for $|| f - S_n f ||_{p,r,\beta}$ and $|| S_n f - L_n f ||_{p,r,\beta}$.

THEOREM 3. Supposing $f \in C^{m, \alpha}$ with $0 \leq r \leq m$, $0 \leq \alpha, \beta \leq 1, r + \beta \leq m + \alpha, n \geq 1$, we have

$$\|f - L_n f\|_{p, r, \beta} \leq D(n, p)(n+1)^{r-m+\beta-\alpha} \|f^{(m)}\|_{C, \alpha}$$

with

$$D(n, p) \leq \begin{cases} 36, & \text{if } 1 \leq p \leq 2, \\ 60A_p + 12, & \text{if } 2$$

JÜRGEN PRESTIN

4. COROLLARIES

Let us give some refinements of this estimate:

1. If $n \ge 2$ we can improve the estimates for

$$\sum_{k=0}^{r} (n+1)^k$$

and for c_n and C_n introduced in Lemmas 1 and 2. That is why it holds for $n \ge 2$ that

$$D(n, p) \leq \begin{cases} 31, 5, & \text{if } 1 \leq p \leq 2, \\ 52, 5A_p + 10, 5, & \text{if } 2$$

and for $n \ge 7$ that

$$D(n, p) \leq \begin{cases} 28, 286, & \text{if } 1 \leq p \leq 2, \\ 47, 143 A_p + 9, 429, & \text{if } 2$$

Analogous improvements are possible for B(n, p) in Theorem 1. The estimates are true for general $n, p, r, \beta, m, \alpha$. It is expected that for special values the constants are essentially smaller.

2. Since $A_p \ge \ln n$ for small *n*, it is better to take the constant with the ln term at least for $n < 5 \cdot 10^8$ in Theorem 3 and at least for $n < 3.9 \cdot 10^5$ in Theorem 1.

3. It is easy to verify in the proofs that we can replace $\|\phi^{(m)}\|_{p,\alpha}$ in the right sides of Theorems 1-3 by

$$\sup_{h \in H} |h|^{-\alpha} \|\phi^{(m)}(\circ + h) - \phi^{(m)}(\circ)\|_p.$$

4. In [7] S. Prössdorf studied a closed subspace of $C^{0, \alpha}$. It is naturally to generalize this to the subspace $\tilde{X}^{m, \alpha} \subseteq X^{m, \alpha}$ $(0 \le \alpha < 1)$:

$$\tilde{X}^{m,\,\alpha} = \left\{ f \in X^{m,\,\alpha} : \lim_{h \to 0} |h|^{-\alpha} \, \|\phi^{(m)}(\circ + h) - \phi^{(m)}(\circ)\|_p = 0 \right\}$$

with norm defined in (1). Then $\tilde{X}^{m,0} = X^{m,0}$.

Therefore we state a corollary.

COROLLARY. Suppose $0 \le r \le m$, $0 \le \beta \le 1$, $0 \le \alpha < 1$ and $r + \beta \le m + \alpha$. Then it holds for $f \in \tilde{X}^{m,\alpha}$

$$\|f - S_n f\|_{p, r, \beta} = \begin{cases} o(n^{r-m+\beta-\alpha} \ln n), & \text{if } p = 1 \text{ or } p = \infty\\ o(n^{r-m+\beta-\alpha}), & \text{if } 1$$

and for $f \in \tilde{C}^{m, \alpha}$

$$\|f - L_n f\|_{p, r, \beta} = \begin{cases} o(n^{r-m+\beta-\alpha} \ln n), & \text{if } p = \infty, \\ o(n^{r-m+\beta-\alpha}), & \text{if } 1 \le p < \infty, \end{cases} (n \to \infty).$$

Remark. In [6] R. Haverkamp proved for $k \ge 1$ and $f \in C^{k,0}$,

$$\|f^{(k)} - (L_n f)^{(k)}\|_C \le \left(1 + C_k \left(2 + \frac{2}{\pi} \ln n\right)\right) \mathring{E}_n(f^{(k)}, C)$$
(17)

with $C_k = ((\pi/2)^k(\pi+2) - 2\pi)/(\pi-2)$ and \mathring{E}_n means that the infimum is taken over all trigonometric polynomials p_n of degree $\leq n$ with $S_0 p_n = 0$. From (6) and (13) we have for $f \in C^{k,0}$

$$\|f^{(k)} - (L_n f)^{(k)}\|_p \leq (1 + \|S_n\|_{C \to X}) E_n(f^{(k)}, C) + n^k (\|S_n\|_{C \to X} + \|L_n\|_{C \to X}) E_n(f, C).$$
(18)

With the inequality

$$E_n(f, C) \leq \mathring{E}_n(f, C) \leq \frac{\pi}{2n+2} \mathring{E}_n(f', C) \leq \left(\frac{\pi}{2n+2}\right)^k \mathring{E}_n(f^{(k)}, C)$$

which follows from [3, Chap. 43], we get

$$\|f^{(k)} - (L_n f)^{(k)}\|_p \le D(k, n, p) \, \dot{E}_n(f^{(k)}, C) \tag{19}$$

with

$$D(k, n, p) = 1 + \|S_n\|_{C \to X} + \left(\frac{\pi}{2}\right)^k (\|S_n\|_{C \to X} + \|L_n\|_{C \to X}).$$

Using Lemma 1 and 2 we obtain estimates for D(k, n, p). If $k \ge 2$, $p = \infty$, they are better than (17). But, if we want to apply Jackson's theorem, it is useful to do this in (18) instead of (19), since $D(k, n, p) > 2(\pi/2)^k$. Such a result, where the constant is independent of k is contained in Theorem 3.

JÜRGEN PRESTIN

ACKNOWLEDGMENTS

I thank Dr. M. Tasche for the many helpful discussions and suggestions during the preparation of this manuscript.

REFERENCES

- 1. N. I. ACHIESER, "Vorlesungen über Approximationstheorie," Akademie-Verlag, Berlin, 1967.
- 2. P. L. BUTZER AND R. J. NESSEL, "Fourier Analysis and Approximation," Vol. 1, Birkhäuser, Basel, 1971.
- 3. E. W. CHENEY, "Introduction to Approximation Theory," McGraw-Hill, New York, 1966.
- 4. H. EHLICH AND K. ZELLER, Auswertung der Normen von Interpolationsoperatoren, Math. Ann. 164 (1966), 105-112.
- 5. G. H. HARDY, Note on Lebesgue's constants in the theory of Fourier series, J. London Math. Soc. 17 (1942), 4-13.
- R. HAVERKAMP, Approximationsgüte der Ableitungen bei trigonometrischer Interpolation, Math. Z. 179 (1982), 59-67.
- 7. S. PRÖSSDORF, Zur Konvergenz der Fourierreihen hölderstetiger Funktionen, Math. Nachr. 69 (1975), 7-14.
- 8. S. PRÖSSDORF AND B. SILBERMANN, "Projektionsverfahren und die näherungsweise Lösung singulärer Gleichungen," Teubner, Leipzig, 1977.
- 9. A. ZYGMUND, "Trigonometric Series," Vols. I and II, Cambridge Univ. Press, London, 1959.