Trigonometric Interpolation in Hölder Spaces

Jürgen Prestin
Sektion Mathematik, Wilhelm-Pieck-Universität
2500 Rostock, East Germany
Communicated by G. Meinardus

Received May 1, 1985

Abstract

This note generalizes estimates in [8] for approximation of periodic functions by Fourier sums and interpolatory polynomials in Hölder spaces. In particular, we give explicit values for constants appearing in Hölder norm results. (C) 1988 Academic Press, Inc.

1. Introduction

Let X be one of the usual spaces C or $L^{p}(1 \leqslant p<\infty)$ of 2π-periodic complex-valued functions. If $f \in C$, we write $\|f\|_{\infty}$ instead of $\|f\|_{c}$. For $0 \leqslant \alpha \leqslant 1$ and $m=0,1,2, \ldots$, we denote by $X^{m, \alpha}$ the class of functions f which fulfil the following condition [2, Definition 1.5.5.]: There exists a 2π-periodic ($m-1$)-times absolutely continuous function ϕ with $\phi^{(m)} \in X$ ($\phi \in X$ in the case $m=0$), $f=\phi$ in X and

$$
\left\|\phi^{(m)}\right\|_{p, \alpha}:=\sup _{h \neq 0}|h|^{-\alpha}\left\|\phi^{(m)}(\circ+h)-\phi^{(m)}(\circ)\right\|_{p}<\infty .
$$

A norm in $X^{m, \alpha}$ is given by

$$
\begin{equation*}
\|f\|_{p, m, \alpha}:=\sum_{k=0}^{m}\left\|\phi^{(k)}\right\|_{p}+\left\|\phi^{(m)}\right\|_{p, \alpha} . \tag{1}
\end{equation*}
$$

We consider, for $f \in X^{m, \alpha}$, the nth Fourier sum

$$
\left(S_{n} f\right)(x)=\frac{1}{\pi} \int_{0}^{2 \pi} f(x-u) K_{n}(u) d u
$$

with the Dirichlet kernel

$$
K_{n}(x)=\frac{1}{2}+\sum_{k=1}^{n} \cos k x .
$$

Further, let $L_{n} f$ be the trigonometric interpolatory polynomial of degree n of a function $f \in C^{m, \alpha}$, based on the equidistant nodes $x_{k}=2 k \pi /(2 n+1)$ $(k=0,1, \ldots, 2 n)$:

$$
\left(L_{n} f\right)(x)=\frac{2}{2 n+1} \sum_{k=0}^{2 n} f\left(x_{k}\right) K_{n}\left(x-x_{k}\right) .
$$

We use the theorem of Jackson on the order of approximation in the following form:

Theorem [1, Chap. 5]. For $n=0,1, \ldots, m=0,1, \ldots, 0 \leqslant \alpha \leqslant 1$ and $f \in X^{m, \alpha}$, we have

$$
\begin{equation*}
E_{n}(f, X) \leqslant 3(n+1)^{-m-\alpha}\left\|\phi^{(m)}\right\|_{p, \alpha} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
E_{n}(f, X) \leqslant \frac{\pi}{2}(n+1)^{-m}\left\|\phi^{(m)}\right\|_{p} \tag{3}
\end{equation*}
$$

2. Operator Norms and Approximation by Fourier Sums

The norm of the operators S_{n} and L_{n} is estimated as follows.

Lemma 1. For $n \geqslant 1$ we have

$$
\left\|S_{n}\right\|_{X \rightarrow X} \leqslant \begin{cases}\frac{4}{\pi^{2}} \ln n+c_{n}, & \text { if } 1 \leqslant p \leqslant \infty \tag{4}\\ A_{p}, & \text { if } 1<p<\infty\end{cases}
$$

with

$$
c_{n}= \begin{cases}1,436, & \text { if } n=1, \\ 1,362, & \text { if } n>1,\end{cases}
$$

and

$$
A_{p}= \begin{cases}4(p /(p-1))^{1 / p}+1, & \text { if } 1<p<2 \\ 1, & \text { if } p=2, \\ 4 p^{1-1 / p}+1, & \text { if } 2<p<\infty\end{cases}
$$

Proof. To prove the first part of (4) we use the well-known convolution theorem [2, p. 10]

$$
\left\|S_{n} f\right\|_{p} \leqslant\|f\|_{p}\left\|2 K_{n}\right\|_{1} .
$$

We get an estimation of $\left\|K_{n}\right\|_{1}$ from the representation of the remainder in [5]. In the case $1<p<\infty$ the inequality (4) is an immediate consequence of

$$
\left\|S_{n} f\right\|_{p} \leqslant A_{p}\|f\|_{p} \quad \text { for } \quad f \in L^{p}(1<p<\infty)
$$

which is proved in [9, Chap. 7].
Lemma 2. We have for $n \geqslant 1$

$$
\left\|L_{n}\right\|_{C \rightarrow X} \leqslant \begin{cases}1, & \text { if } 1 \leqslant p \leqslant 2, \\ 3 A_{p}, & \text { if } 2<p<\infty \\ \frac{2}{\pi} \ln n+C_{n}, & \text { if } 2<p \leqslant \infty\end{cases}
$$

with

$$
C_{n}= \begin{cases}5 / 3, & \text { if } n=1, \\ 1,548, & \text { if } n>1 .\end{cases}
$$

Proof. The Parseval equation [9, Chap. 10.2]

$$
\left\|L_{n} f\right\|_{2}^{2}=\frac{1}{2 n+1} \sum_{k=0}^{2 n}\left|\left(L_{n} f\right)\left(x_{k}\right)\right|^{2}
$$

yields

$$
\sup _{\|f\|_{\infty}=1}\left\|L_{n} f\right\|_{p} \leqslant \sup _{\|f\|_{\infty}=1}\left\|L_{n} f\right\|_{2}=1, \quad \text { if } \quad 1 \leqslant p \leqslant 2 .
$$

Generally for $1<p<\infty$ the assertion follows from [9, Chap. 10]

$$
\left\|L_{n} f\right\|_{p} \leqslant 3 A_{p}\left\{\frac{1}{2 n+1} \sum_{k=0}^{2 n}\left|\left(L_{n} f\right)\left(x_{k}\right)\right|^{p}\right\}^{1 / p} .
$$

If $X=C$, it is proved in [4]

$$
\begin{equation*}
\left\|L_{n}\right\|_{C \rightarrow C}=\frac{1}{2 n+1}\left\{1+2 \sum_{k=0}^{n-1}\left(\sin \frac{2 k+1}{4 n+2} \pi\right)^{-1}\right\} . \tag{5}
\end{equation*}
$$

Since

$$
\left|(\sin x)^{-1}-x^{-1}\right| \leqslant 1-2 / \pi \quad \text { for } \quad|x| \leqslant \pi / 2, x \neq 0
$$

and

$$
\left|(\sin x)^{-1}-x^{-1}\right| \leqslant \sqrt{2}-4 / \pi \quad \text { for } \quad|x| \leqslant \pi / 4, x \neq 0
$$

by the monotonicity of the left side for $0<x \leqslant \pi / 2$, it follows that

$$
\left\|L_{n}\right\|_{C \rightarrow C} \leqslant \frac{1}{2 n+1}+\frac{n}{2 n+1}\left(1+\sqrt{2}-\frac{6}{\pi}\right)+\frac{2}{2 n+1} \sum_{k=0}^{n-1} \frac{(2 n+1) 2}{(2 k+1) \pi}
$$

For $n \geqslant 20$ we estimate

$$
\begin{aligned}
\left\|L_{n}\right\|_{C \rightarrow C} & \leqslant \frac{1}{39}+\frac{1}{2}+\frac{\sqrt{2}}{2}-\frac{3}{\pi}+\frac{4}{\pi} \sum_{k=0}^{19} \frac{1}{2 k+1}+\frac{2}{\pi} \ln (2 n-1)-\frac{2}{\pi} \ln 39 \\
& <1,545+\frac{2}{\pi} \ln n
\end{aligned}
$$

as we stated. For $n=1,2, \ldots, 19$ we get the assertion by easy calculations in (5).

Remark. With the same methods but sharper estimates we obtain $C_{n}<1,5$ for $n \geqslant 4$ and $c_{n}<1,3$ for $n \geqslant 7$.

Theorem 1. Supposing $f \in X^{m, \alpha}$ with $0 \leqslant r \leqslant m, 0 \leqslant \alpha, \beta \leqslant 1, r+\beta \leqslant$ $m+\alpha, n \geqslant 1$, we have

$$
\left\|f-S_{n} f\right\|_{p, r, \beta} \leqslant B(n, p)\left((n+1)^{\beta}+1\right)(n+1)^{r-m-\alpha}\left\|\phi^{(m)}\right\|_{p, \alpha}
$$

with

$$
B(n, p)= \begin{cases}14,616+\frac{24}{\pi^{2}} \ln n, & \text { if } 1 \leqslant p \leqslant \infty \\ 6 A_{p}+6, & \text { if } 1<p<\infty\end{cases}
$$

Proof. Using $\left(S_{n} f\right)^{(k)}=S_{n} \phi^{(k)}(0 \leqslant k \leqslant r)$, we get

$$
\begin{equation*}
\left\|\phi^{(k)}-\left(S_{n} \phi\right)^{(k)}\right\|_{p} \leqslant\left(1+\left\|S_{n}\right\|_{X \rightarrow X}\right) E_{n}\left(\phi^{(k)}, X\right) . \tag{6}
\end{equation*}
$$

With the notation

$$
B_{p}=1+\left\|S_{n}\right\|_{X \rightarrow X}
$$

it follows from (2) and (6) that

$$
\begin{equation*}
\left\|\phi^{(k)}-\left(S_{n} \phi\right)^{(k)}\right\|_{p} \leqslant 3 B_{p}(n+1)^{k-m-x}\left\|\phi^{(m)}\right\|_{p, \alpha} \tag{7}
\end{equation*}
$$

Hence we obtain by summation

$$
\begin{equation*}
\sum_{k=0}^{r}\left\|\phi^{(k)}-\left(S_{n} \phi\right)^{(k)}\right\|_{p} \leqslant 6 B_{p}(n+1)^{r-m-x}\left\|\phi^{(m)}\right\|_{p, \alpha} \tag{8}
\end{equation*}
$$

Now we define for brevity $G=\{h:|h|>1 /(n+1)\}, \quad H=\{h: 0<|h| \leqslant$ $1 /(n+1)\}$, and

$$
\begin{equation*}
g_{h}(x)=\phi(x+h)-\phi(x) . \tag{9}
\end{equation*}
$$

Applying (7) we get for $h \in G$,

$$
\begin{align*}
\sup _{h \in G}|h|^{-\beta}\left\|g_{h}^{(r)}-S_{n} g_{h}^{(r)}\right\|_{p} & \leqslant 2(n+1)^{\beta}\left\|\phi^{(r)}-S_{n} \phi^{(r)}\right\|_{p} \\
& \leqslant 6 B_{p}(n+1)^{r-m+\beta-\alpha}\left\|\phi^{(m)}\right\|_{p, \alpha} \tag{10}
\end{align*}
$$

In the case $h \in H$ we estimate with (6)

$$
\sup _{h \in H}|h|^{-\beta}\left\|g_{h}^{(r)}-S_{n} g_{h}^{(r)}\right\|_{p} \leqslant \sup _{h \in H}|h|^{-\beta} B_{p} E_{n}\left(g_{h}^{(r)}, X\right) .
$$

If $\beta \leqslant \alpha$ it follows easily from (3)

$$
\begin{align*}
\sup _{h \in H}|h|^{-\beta} B_{p} E_{n}\left(g_{h}^{(r)}, X\right) & \leqslant \sup _{h \in H}|h|^{-\beta} B_{p} \frac{\pi}{2}(n+1)^{r-m}\left\|g_{h}^{(m)}\right\|_{p} \\
& \leqslant B_{p} \frac{\pi}{2}(n+1)^{r-m+\beta-\alpha}\left\|\phi^{(m)}\right\|_{p, \alpha} \tag{11}
\end{align*}
$$

Let now $\alpha<\beta$ which implies $r<m$. Applying Jackson's theorem we obtain

$$
\begin{align*}
& \sup _{h \in H}|h|^{-\beta} B_{p} E_{n}\left(g_{h}^{(r)}, X\right) \\
& \leqslant \sup _{h \in H}|h|^{-\beta} B_{p} 3(n+1)^{r-m+1} \sup _{\delta \in H}\left\|g_{h}^{(m-1)}(\circ+\delta)-g_{h}^{(m-1)}(\circ)\right\|_{p} \\
&=3(n+1)^{r-m+1} B_{p} \sup _{h \in H} \sup _{\delta \in H}|h|^{-\beta}\left\|\int_{0}^{h} g_{\delta}^{(m)}(\circ+u) d u\right\|_{p} \\
& \leqslant 3(n+1)^{r-m+1} B_{p} \sup _{h \in H}|h|^{1-\beta} \sup _{\delta \in H}\left\|g_{\delta}^{(m)}\right\|_{p} \\
& \leqslant 3 B_{p}(n+1)^{r-m+\beta-\alpha}\left\|\phi^{(m)}\right\|_{p, \alpha} . \tag{12}
\end{align*}
$$

The proof is complete, if we summarize (8), (10)-(12).

The nth Fourier sum of a function $f \in L^{2}$ is also the trigonometric polynomial of best approximation to f in L^{2}. Therefore we can sharpen the theorem in this case. Under the same conditions it holds that

$$
\left\|f-S_{n} f\right\|_{2, r, \beta} \leqslant 6\left((n+1)^{\beta}+1\right)(n+1)^{r-m-\alpha}\left\|\phi^{(m)}\right\|_{2, \alpha} .
$$

3. Interpolation

At first we estimate the difference between Fourier sum $S_{n} f$ and interpolatory polynomial $L_{n} f$ for functions $f \in C^{m, \alpha}$.

Theorem 2. Supposing $f \in C^{m, \alpha}$ with $0 \leqslant r \leqslant m, 0 \leqslant \alpha, \beta \leqslant 1, r+\beta \leqslant$ $m+\alpha, n \geqslant 1$, we have

$$
\left\|S_{n} f-L_{n} f\right\|_{p, r, \beta} \leqslant C(n, p)\left((n+1)^{\beta}+1\right)(n+1)^{r-m-x}\left\|f^{(m)}\right\|_{C, \alpha}
$$

with

$$
C(n, p)= \begin{cases}12, & \text { if } 1 \leqslant p \leqslant 2 \\ 24 A_{p}, & \text { if } 2<p<\infty \\ 18,616+\left(\frac{12}{\pi}+\frac{24}{\pi^{2}}\right) \ln n, & \text { if } 2<p \leqslant \infty\end{cases}
$$

Proof. Applying the inequality of Bernstein, we get

$$
\begin{aligned}
\left\|\left(S_{n} f\right)^{(k)}-\left(L_{n} f\right)^{(k)}\right\|_{p} & \leqslant n^{k}\left\|S_{n} f-L_{n} f\right\|_{p} \\
& \leqslant n^{k}\left(\left\|b_{n}-S_{n} f\right\|_{p}+\left\|b_{n}-L_{n} f\right\|_{p}\right),
\end{aligned}
$$

where b_{n} is the trigonometric polynomial of best approximation to f in C. With the help of (2) it follows that

$$
\begin{gather*}
\left\|\left(S_{n} f\right)^{(k)}-\left(L_{n} f\right)^{(k)}\right\|_{p} \leqslant n^{k} E_{n}(f, C)\left(\left\|S_{n}\right\|_{C \rightarrow X}+\left\|L_{n}\right\|_{C \rightarrow X}\right) \\
\leqslant 3(n+1)^{k-m-\alpha}\left\|f^{(m)}\right\|_{C, \alpha}\left(\left\|S_{n}\right\|_{C \rightarrow X}+\left\|L_{n}\right\|_{C \rightarrow X}\right) . \tag{13}
\end{gather*}
$$

Further, we get

$$
\sup _{h \neq 0}|h|^{-\beta}\left\|\left(S_{n} g_{h}\right)^{(r)}-\left(L_{n} g_{h}\right)^{(r)}\right\|_{p} \leqslant \sup _{h \neq 0}|h|^{-\beta} n^{r}\left\|S_{n} g_{h}-L_{n} g_{h}\right\|_{p}
$$

with g_{h} defined in (9). Then we have

$$
\begin{align*}
\sup _{h \in G} n^{r}|h|^{-\beta}\left\|S_{n} g_{h}-L_{n} g_{h}\right\|_{p} & \leqslant \sup _{h \in G} 2 n^{r}|h|^{-\beta}\left\|S_{n} f-L_{n} f\right\|_{p} \\
& =2 n^{r}(n+1)^{\beta}\left\|S_{n} f-L_{n} f\right\|_{p} \tag{14}
\end{align*}
$$

and

$$
\begin{align*}
\sup _{h \in H} n^{r}|h|^{-\beta}\left\|S_{n} g_{h}-L_{n} g_{h}\right\|_{p} & \leqslant \sup _{h \in H} n^{r}|h|^{-\beta} E_{n}\left(g_{h}, C\right) \\
& \times\left(\left\|L_{n}\right\|_{C \rightarrow X}+\left\|S_{n}\right\|_{C \rightarrow X}\right) \tag{15}
\end{align*}
$$

Now we must distinguish the cases $\beta \leqslant \alpha$ and $\alpha<\beta$ with $r<m$. We will consider only the first one, then the second case can be handled analogously as in (12).
Denoting the right side of (15) with A, we get for $\beta<\alpha$

$$
\begin{align*}
A & \leqslant \sup _{h \in H} \frac{\pi}{2} n^{r}(n+1)^{-m}|h|^{-\beta}\left\|g_{h}^{(m)}\right\|_{C}\left(\left\|S_{n}\right\|_{C \rightarrow X}+\left\|L_{n}\right\|_{C \rightarrow X}\right) \\
& \leqslant \frac{\pi}{2} n^{r}(n+1)^{-m+\beta-\alpha}\left\|f^{(m)}\right\|_{C, x}\left(\left\|S_{n}\right\|_{C \rightarrow X}+\left\|L_{n}\right\|_{C \rightarrow X}\right) . \tag{16}
\end{align*}
$$

Now it is enough to collect (13) for $0 \leqslant k \leqslant r$, (14)-(16), to use $\|\circ\|_{p, r, \beta} \leqslant\|\circ\|_{2, r, \beta}$ for $1 \leqslant p<2$ and we get the desired result.

The following main theorem is now a simple consequence of the estimates for $\left\|f-S_{n} f\right\|_{p, r, \beta}$ and $\left\|S_{n} f-L_{n} f\right\|_{p, r, \beta}$.

Theorem 3. Supposing $f \in C^{m, \alpha}$ with $0 \leqslant r \leqslant m, 0 \leqslant \alpha, \beta \leqslant 1, r+\beta \leqslant$ $m+\alpha, n \geqslant 1$, we have

$$
\left\|f-L_{n} f\right\|_{p, r, \beta} \leqslant D(n, p)(n+1)^{r-m+\beta-\alpha}\left\|f^{(m)}\right\|_{C, \alpha}
$$

with

$$
D(n, p) \leqslant \begin{cases}36, & \text { if } 1 \leqslant p \leqslant 2 \\ 60 A_{p}+12, & \text { if } 2<p<\infty \\ 66,464+17,367 \ln n, & \text { if } 2<p \leqslant \infty\end{cases}
$$

4. Corollaries

Let us give some refinements of this estimate:

1. If $n \geqslant 2$ we can improve the estimates for

$$
\sum_{k=0}^{r}(n+1)^{k}
$$

and for c_{n} and C_{n} introduced in Lemmas 1 and 2 . That is why it holds for $n \geqslant 2$ that

$$
D(n, p) \leqslant \begin{cases}31,5, & \text { if } 1 \leqslant p \leqslant 2 \\ 52,5 A_{p}+10,5, & \text { if } 2<p<\infty \\ 55,356+15,196 \ln n, & \text { if } 2<p \leqslant \infty\end{cases}
$$

and for $n \geqslant 7$ that

$$
D(n, p) \leqslant\left\{\begin{array}{lll}
28,286, & \text { if } 1 \leqslant p \leqslant 2 \\
47,143 A_{p}+9,429, & \text { if } 2<p<\infty \\
48,086+13,645 \ln n, & \text { if } 2<p \leqslant \infty
\end{array}\right.
$$

Analogous improvements are possible for $B(n, p)$ in Theorem 1. The estimates are true for general $n, p, r, \beta, m, \alpha$. It is expected that for special values the constants are essentially smaller.
2. Since $A_{p} \gg \ln n$ for small n, it is better to take the constant with the \ln term at least for $n<5 \cdot 10^{8}$ in Theorem 3 and at least for $n<3.9 \cdot 10^{5}$ in Theorem 1.
3. It is easy to verify in the proofs that we can replace $\left\|\phi^{(m)}\right\|_{p, \alpha}$ in the right sides of Theorems 1-3 by

$$
\sup _{h \in H}|h|^{-\alpha}\left\|\phi^{(m)}(\circ+h)-\phi^{(m)}(\circ)\right\|_{p}
$$

4. In [7] S. Prössdorf studied a closed subspace of $C^{0, a}$. It is naturally to generalize this to the subspace $\bar{X}^{m, \alpha} \subseteq X^{m, \alpha}(0 \leqslant \alpha<1)$:

$$
\tilde{X}^{m, \alpha}=\left\{f \in X^{m, \alpha}: \lim _{h \rightarrow 0}|h|^{-\alpha}\left\|\phi^{(m)}(\circ+h)-\phi^{(m)}(\circ)\right\|_{p}=0\right\}
$$

with norm defined in (1). Then $\bar{X}^{m, 0}=X^{m, 0}$.
Therefore we state a corollary.

Corollary. Suppose $0 \leqslant r \leqslant m, 0 \leqslant \beta \leqslant 1,0 \leqslant \alpha<1$ and $r+\beta \leqslant m+\alpha$. Then it holds for $f \in \bar{X}^{m, \alpha}$

$$
\left\|f-S_{n} f\right\|_{p, r, \beta}=\left\{\begin{array}{ll}
o\left(n^{r-m+\beta-\alpha} \ln n\right), & \text { if } p=1 \text { or } p=\infty \\
o\left(n^{r-m+\beta-\alpha}\right), & \text { if } 1<p<\infty
\end{array} \quad(n \rightarrow \infty)\right.
$$

and for $f \in \bar{C}^{m, \alpha}$

$$
\left\|f-L_{n} f\right\|_{p, r, \beta}= \begin{cases}o\left(n^{r-m+\beta-\alpha} \ln n\right), & \text { if } p=\infty, \\ o\left(n^{r-m+\beta-\alpha}\right), & \text { if } \quad 1 \leqslant p<\infty, \quad(n \rightarrow \infty)\end{cases}
$$

Remark. In [6] R. Haverkamp proved for $k \geqslant 1$ and $f \in C^{k, 0}$,

$$
\begin{equation*}
\left\|f^{(k)}-\left(L_{n} f\right)^{(k)}\right\|_{C} \leqslant\left(1+C_{k}\left(2+\frac{2}{\pi} \ln n\right)\right) \dot{E}_{n}\left(f^{(k)}, C\right) \tag{17}
\end{equation*}
$$

with $C_{k}=\left((\pi / 2)^{k}(\pi+2)-2 \pi\right) /(\pi-2)$ and $\stackrel{\circ}{E}_{n}$ means that the infimum is taken over all trigonometric polynomials p_{n} of degree $\leqslant n$ with $S_{0} p_{n}=0$. From (6) and (13) we have for $f \in C^{k, 0}$

$$
\begin{align*}
\left\|f^{(k)}-\left(L_{n} f\right)^{(k)}\right\|_{p} \leqslant & \left(1+\left\|S_{n}\right\|_{C \rightarrow X}\right) E_{n}\left(f^{(k)}, C\right) \\
& +n^{k}\left(\left\|S_{n}\right\|_{C \rightarrow X}+\left\|L_{n}\right\|_{C \rightarrow X}\right) E_{n}(f, C) \tag{18}
\end{align*}
$$

With the inequality

$$
E_{n}(f, C) \leqslant \stackrel{\circ}{E}_{n}(f, C) \leqslant \frac{\pi}{2 n+2} \stackrel{\circ}{E}_{n}\left(f^{\prime}, C\right) \leqslant\left(\frac{\pi}{2 n+2}\right)^{k} \stackrel{\circ}{E}_{n}\left(f^{(k)}, C\right)
$$

which follows from [3, Chap. 43], we get

$$
\begin{equation*}
\left\|f^{(k)}-\left(L_{n} f\right)^{(k)}\right\|_{p} \leqslant D(k, n, p) \dot{E}_{n}\left(f^{(k)}, C\right) \tag{19}
\end{equation*}
$$

with

$$
D(k, n, p)=1+\left\|S_{n}\right\|_{C \rightarrow X}+\left(\frac{\pi}{2}\right)^{k}\left(\left\|S_{n}\right\|_{C \rightarrow X}+\left\|L_{n}\right\|_{C \rightarrow X}\right) .
$$

Using Lemma 1 and 2 we obtain estimates for $D(k, n, p)$. If $k \geqslant 2, p=\infty$, they are better than (17). But, if we want to apply Jackson's theorem, it is useful to do this in (18) instead of (19), since $D(k, n, p)>2(\pi / 2)^{k}$. Such a result, where the constant is independent of k is contained in Theorem 3.

Acknowledgments

I thank Dr. M. Tasche for the many helpful discussions and suggestions during the preparation of this manuscript.

References

1. N. I. Achieser, "Vorlesungen über Approximationstheorie," Akademie-Verlag, Berlin, 1967.
2. P. L. Butzer and R. J. Nessel, "Fourier Analysis and Approximation," Vol. 1, Birkhäuser, Basel, 1971.
3. E. W. Cheney, "Introduction to Approximation Theory," McGraw-Hill, New York, 1966.
4. H. Ehlich and K. Zeller, Auswertung der Normen von Interpolationsoperatoren, Math. Ann. 164 (1966), 105-112.
5. G. H. Hardy, Note on Lebesgue's constants in the theory of Fourier series, J. London Math. Soc. 17 (1942), 4-13.
6. R. Haverkamp, Approximationsgüte der Ableitungen bei trigonometrischer Interpolation, Math. Z. 179 (1982), 59-67.
7. S. Prössdorf, Zur Konvergenz der Fourierreihen hölderstetiger Funktionen, Math. Nachr. 69 (1975), 7-14.
8. S. Prössdorf and B. Silbermann, "Projektionsverfahren und die näherungsweise Lösung singulärer Gleichungen," Teubner, Leipzig, 1977.
9. A. Zygmund, "Trigonometric Series," Vols. I and II, Cambridge Univ. Press, London, 1959.
