
JOURNAL OF APPROXIMATION THEORY 53, 145-154 (1988)

Trigonometric Interpolation in Holder Spaces
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This note generalizes estimates in [8] for approximation of periodic functions by
Fourier sums and interpolatory polynomials in Holder spaces. In particular, we
give explicit values for constants appearing in Holder norm results. © 1988 Academic

Press, Inc.

1. INTRODUCTION

Let X be one of the usual spaces C or U (1 ~p < 00) of 2n-periodic
complex-valued functions. If IE C. we write IIII1 C<) instead of IlfII c' For
o~ ex ~ 1 and m = O. 1. 2. .... we denote by X"" ~ the class of functions I
which fulfil the following condition [2. Definition 1.5.5.]: There exists a
2n-periodic (m - 1)-times absolutely continuous function </J with </J(m) E X
(</J E X in the case m = 0). 1= </J in X and

1I</J(m)llp,~ := sup Ihl-~ II </J(m)( 0 +h) - </J(m)( 0 )lI p < 00.
h#O

A norm in X"" ex is given by

m

1I/11 p,m, ex := L 11</J(k)ll p + 1I</J(m)ll p.ex'
k~O

We consider. for IE X""~. the nth Fourier sum

112
"(Sn!)(x)=- I(x-u) K,,(u) du

n 0

with the Dirichlet kernel

1 "
K,,(x)=2+ L cos kx.

k~l
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Further, let Lnl be the trigonometric interpolatory polynomial of degree n
of a function IE em. ~, based on the equidistant nodes Xk = 2kn/(2n + 1)
(k = 0, 1, ..., 2n):

We use the theorem of Jackson on the order of approximation in the
following form:

THEOREM [1, Chap. 5]. For n=O, 1, ..., m=O, 1, ..., O~IX~ 1 and IE xm.~,

we have

and

2. OPERATOR NORMS AND ApPROXIMATION BY FOURIER SUMS

The norm of the operators Sn and L n is estimated as follows.

LEMMA 1. For n~ 1 we have

(2)

(3)

with

if 1~p~ 00,

if l<p<oo
(4)

and

_{I, 436,
en - 1, 362,

if n = 1,
if n> 1,

_!4(P/(P-1))iI
P + 1,

Ap - 1,
4pl~1IP+ 1,

if 1<p<2,

if P = 2,
if 2<p<00.
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Proof To prove the first part of (4) we use the well-known convolution
theorem [2, p. 10]

We get an estimation of II K n III from the representation of the remainder in
[5]. In the case 1<p< 00 the inequality (4) is an immediate consequence
of

for fEU (1 <p< 00),

which is proved in [9, Chap. 7]. I

LEMMA 2. We have for n ~ 1

1,

IILnllc~ x~ 3Ap ,

2
-lnn+ Cn'
1t

with

C = {5/3,
n 1,548,

if 1~p~2,

if 2<p<00,

if 2<p~oo,

if n = 1,
if n>1.

Proof The Parseval equation [9, Chap. 10.2]

yields

sup IILJllp~ sup IILJI12=1,
II 11I00 = I IIf1100 = I

if 1~p ~ 2.

Generally for 1<p < 00 the assertion follows from [9, Chap. 10]

IILnfil p ~ 3A p {2n ~ 1k~O I(Lnf )(xdlP
riP.

If x= C, it is proved in [4]

1 { n-I( 2k+l )-I}
IILnllc~c=2n+ 1 1+2 k~O sin 4n+2 1t •

640/53/2·3

(5)
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and

for Ixl ~ n12, x'" 0

for Ixl ~nI4, x",O

by the monotonicity of the left side for 0 < x ~ n12, it follows that

For n~ 20 we estimate

1 1 J2 3 4 19 1 2 2
IILnllc_c~-+-+---+- L --+-In(2n-l)--ln 39

39 2 2 n n k = 0 2k + 1 n n

2
< 1, 545 +- In n

n

as we stated. For n = 1, 2, ..., 19 we get the assertion by easy calculations
in (5). I

Remark. With the same methods but sharper estimates we obtain
Cn < 1, 5 for n~4 and Cn < 1, 3 for n~7.

THEOREM 1. Supposing IE X"" ~ with 0 ~ r ~ m, 0 ~ a, p~ 1, r +P~
m + a, n ~ 1, we have

with

B(n, p) =
if l<p<oo.

With the notation

Bp =1+ IISnllx_x

it follows from (2) and (6) that

11t,6(k)- (Snt,6)(k)lI p ~ 3Bp (n + l)k-m-~ 11t,6(m)lIp.~. (7)
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Hence we obtain by summation
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r

L 11<p(k)-(Sn<p)(k)llp~6Bp(n+ly-m-(l 1I<p(m)lIp,(l' (8)
k=O

Now we define for brevity G = {h: jhj > Ij(n + I)}, H = {h: 0 < Ihl ~
Ij(n + 1)}, and

(9)

Applying (7) we get for hE G,

sup Ihl- fJ Ilgr) - Sn grlilp~ 2(n + l)fJ 11<p(rl - Sn<p(r)ll p
heG

In the case hE H we estimate with (6)

sup Ihl- fJ II gr) - Sngl:)ll p~ sup Ihl- fJ BpEn(grl, X).
hEH heH

If f3 ~ ex. it follows easily from (3)

Let now ex. < p which implies r < m. Applying Jackson's theorem we obtain

sup Ihl- fJ Bp En(gl:l, X)
heH

~ sup Ih1-/l Bp 3(n + 1)r - m+ ! sup II g~m - ! l( 0 + (5) - gkm- !)(o) II p
heH oeH

=3(n + l)r-m+! Bp sup sup Ihl- fJ IIrg~ml(o + u) dull
hEHoeH 0 p

~3(n+ ly-m+! Bp sup IW-/l sup IIg~mllip
heH oeH

(12)

The proof is complete, if we summarize (8), (lO}-(12). I
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The nth Fourier sum of a function IE L 2 is also the trigonometric
polynomial of best approximation to I in L 2. Therefore we can sharpen the
theorem in this case. Under the same conditions it holds that

3. INTERPOLATION

At first we estimate the difference between Fourier sum Snl and inter­
polatory polynomial Lnf for functions IE cm, ~.

THEOREM 2. Supposing I E cm.~ with 0 ~ r ~ m, 0 ~ IX, f3 ~ 1, r + f3 ~
m + IX, n";3 1, we have

with

12, if 1~p~2,

C(n,p) = 24A p , if 2<p<oo,

C2 24) if18,616 + -; + 11: 2 In n, 2<p~oo.

Proof Applying the inequality of Bernstein, we get

II(Snf)(kl - (Ln/)(klil p~ nk IISnl- L"/ll p

~nk(lIbn-S"/lIp+ Ilbn-Ln/ll p ),

where b" is the trigonometric polynomial of best approximation to I in C.
With the help of (2) it follows that

II (S"I )(k) - (L" I )(k)ll p~ nk E,,(f, C)( I\Sn II c~ x + I\L" II c~ x)

~ 3(n + l)k-m-~ II I (mlllc,~(IIS" IIc~x+ IILnllc~x)· (13)

Further, we get

sup Ihl-P II (Sngh)(r) - (Lngh)(r)lI p~ sup /hl- Pnr IIS"gh -Lnghlip
h "'0 h .. O
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with gh defined in (9). Then we have

sup nr \hl- p IISn gh - Lngh lip ~ sup 2n r Ihl-p IISnf - Lnfll p
hEG hEG

151

=2nr(n + 1)13 IIS,J- L,Jll p (14)

and

sup nr Ihl- p IISn gh - Lngh lip ~ sup nr Ihl- p En(gh' C)
hEH hEH

Now we must distinguish the cases f3 ~ IX and IX < f3 with r < m. We will
consider only the first one, then the second case can be handled
analogously as in (12).

Denoting the right side of (15) with A, we get for f3 < IX

Now it is enough to collect (13) for O~k~r, (14)-(16), to use
11 0 lip, r, fJ ~ II 0 112,r, 13 for 1~p < 2 and we get the desired result. I

The following main theorem is now a simple consequence of the
estimates for IIf-Snfllp,r,fJ and IISnf-Lnfllp.r,p.

THEOREM 3. Supposing fE cm, ~ with 0~ r ~ m, 0~ IX, f3 ~ 1, r + f3 ~
m + IX, n;::: 1, we have

with

!
36,

D(n, p) ~ 60A p + 12,

66,464 + 17, 367 In n,

if 1~p~2,

if 2<p<oo,

if 2<p~oo.
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4. COROLLARIES

Let us give some refinements of this estimate:

1. If n~ 2 we can improve the estimates for

and for en and Cn introduced in Lemmas 1 and 2. That is why it holds for
n ~ 2 that

1

31,5,

D(n,p)~ 52,5A p + 10,5,

55,356 + 15, 196 In n,

and for n~ 7 that

1

28,286,

D(n,p)~ 47,143Ap +9,429,

48, 086 + 13, 645 In n,

if 1~p~2,

if 2 <p< 00,

if 2<p~00

if 1~p ~2,

if 2 <p< 00,

if 2<p~00.

Analogous improvements are possible for B(n, p) in Theorem 1. The
estimates are true for general n, p, r, {J, m, a. It is expected that for special
values the constants are essentially smaller.

2. Since A p ~ In n for small n, it is better to take the constant with the
In term at least for n < 5 . 108 in Theorem 3 and at least for n < 3.9 . 105 in
Theorem 1.

3. It is easy to verify in the proofs that we can replace 11~(m)llp." in the
right sides of Theorems 1-3 by

sup Ihl-" 1I~(m)( 0 + h) - ~(m)( 0 )ll p.
hEH

4. In [7] S. Prossdorf studied a closed subspace of Co. ex. It is naturally
to generalize this to the subspace p." £; p." (0 ~ at < 1):

with norm defined in (1). Then X"" °= p.o.

Therefore we state a corollary.
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COROLLARY. Suppose O~r~m, O~f3~ 1, O~C« 1 and r+f3~m+C(.

Then it holds for fE yn.oc

and for fE em. oc

{
o(nr - m + iJ -" In n),

Ilf- LJllp.r. fJ = o(nr- m+ iJ-"),

if p = 1 or p = 00

if l<p<oo (n--+oo)

if p= 00,

if 1~P < 00, (n --+ 00 ).

Remark. In [6] R. Haverkamp proved for k ~ 1 and fE Ck
, 0,

with Ck=«n/2)k(n+2)-2n)/(n-2) and En means that the infimum is
taken over all trigonometric polynomials Pn of degree ~ n with SoPn = O.
From (6) and (13) we have for fE Ck,o

Ilpkl - (Lnf)(klil p ~ (1 + liS" Ilc~ x) E,,(f(kl, C)

+nk(IIS"llc~x+ IIL"llc~x)E,,(J, C). (18)

With the inequality

which follows from [3, Chap. 43], we get

Ilf(kl - (L"f)(k l lip ~ D(k, n, p) E,,(Pkl, C)

with

D(k, n,p) = 1+ liS" Ilc~x+ (~)k (liS" IIe-x+ ilL" lie_x).

(19)

Using Lemma 1 and 2 we obtain estimates for D(k, n, p). If k ~ 2, p = 00,

they are better than (17). But, if we want to apply Jackson's theorem, it is
useful to do this in (18) instead of (19), since D(k,n,p»2(n/2t. Such a
result, where the constant is independent of k is contained in Theorem 3.
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